	OFFICE DU BA	CCALAURÉAT D	U CAMEROU	N	
Examen:	Probatoire	Série:	D etTI	Session:	2020
Épreuve:	Physique	Durée:	2 heures	Coefficient:	2

A. EVALUATIONS DES RESSOURCES / 24 points

Exercice 1: Vérification des savoirs /8 points

1-1 Définir l'incertitude type d'une grandour V

1 1 Definit i incertitude type a une grandeur y.	1pt
1-2 Donner les unités en système international (SI) des grandeurs suivantes :	2pt
1-2-1 Chaleur latente de changement d'état physique d'un corps.	1pt
1-2-2 Fréquence d'une onde électromagnétique.	1pt
1.3. Énoncer la loi de LENZ.	
1.4. Donner la différence entre :	1pt
1-4-1 lumière monochromatique et lumière polychromatique.	1pt
1-4-2 Spectre de raie et spectre continue.	1pt
1-5 Donner les appareils de mesure des grandeurs physiques suivantes :	100
1-5-1 la puissance électrique.	1pt
1-5-2 le champ magnétique.	1pt
Exercice 2: Application des savoirs/ 8 points	
2-1 Un photon a pour longueur d'onde λ =656,30 nm, dans le vide.	
Déterminer son énergie en électronvolts.	2pt
Données : $c = 3,0.10^8 \text{ m.s}^{-1}$, 1 nm= 10^{-9} m, 1 eV= 1,6. 10^{-19} J, h= $6,62.10^{-34}$ J.s.	
2-2 Déterminer la vergence d'un système optique constitué de deux lentilles minces accolé	es de
distances focales respectives $f_1 = -5.0$ cm et $f_2 = 3.0$ cm.	2pt
2.21	-100

2-3 Le système optique d'un microscope est constitué de deux lentilles convergentes de

distances focales respectives $\overline{O_1F_1'}$ = 5,0 mm et $\overline{O_2F_2'}$ = 2,0 cm. L'intervalle optique est Δ =10 cm

2-3-1 La puissance intrinsèque de ce microscope.

2pt

2-3-2 Le grossissement commercial.

Calculer:

2pt

Exercice 3: Vérification des acquis/8 points

3.1. Capacité calorifique d'un système/ 3 points

Un système est constitué d'un vase en aluminium de masse de 50 g, contenant 120 g de pétrole de chaleur massique C_P = 2090 J.°C⁻¹.kg⁻¹

3.1.1. La chaleur massique de l'aluminium est C_{AI} = 24,4 J. °C⁻¹.mol⁻¹, exprimer C_{AI} en J. °C⁻¹.kg⁻¹.1pt 3.1.2. Déterminer la capacité calorifique de ce système.

Donnée: Al: 27 g.mol⁻¹

3-2 Défaut de l'œil/ 2 points

Un œil myope a son punctum remotum (PR) situé à 17 cm et son punctum proximum(PP) à 12 cm.

3.2.-1 Déterminer la distance D_M (distance maximale de vision distincte) où ce myope peut distinguer correctement les objets. 0,5pt

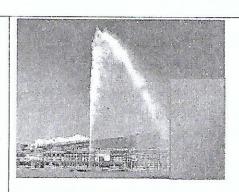
3.2-2. Déterminer la vergence de la lentille correctrice de contact pour permettre à cet œil de voir nettement les objets très éloignés.

3-3. Fonctionnement d'un générateur/ 3 points

Une dynamo, débite dans un circuit dont la résistance est ajustable. Pour chacun des réglages de la résistance, on relève la tension U aux bornes de ce générateur correspondant à l'intensité I du courant délivré :

I (A)	0	4	8	12	16	20	24	28
U(V)	110	108	106	104	102	100	98	96

3-3-1. Ce générateur est-il idéal ? Justifier.


1,5pt

3-3-2 En utilisant le tableau ci-dessus, sans construire de graphe, déterminer la f.é.m (E) et la résistance interne r de ce générateur.

B. EVALUATION DES COMPETENCES / 16 points

Compétence visée : Pompage de l'eau

Au cours d'une promenade en ville, deux frères découvrent un jet d'eau (propulsion de l'eau à une hauteur considérable). Emerveillés, ils se rapprochent du propriétaire de cet ouvrage pour comprendre son fonctionnement, celui-ci leur donne certaines informations contenues dans les documents A et B. Pour un cycle de fonctionnement, la pompe propulse 498 L d'eau. Elle est alimentée par un groupe électrogène et le propriétaire estime que le coût énergique est élevé.

Document A : Caractéristiques de la	Document B : Caractéristique du groupe
pompe	électrogène
puissance mécanique utile P _u = 830 W	GENESIS GX 2500
rendement (η) des pompes immergées	- Equipement complet : 2 prises 220 V avec
$\eta = 0.79$	disjoncteur de protection et une sortie 12/24 V avec
	disjoncteur de protection pour la charge de la
	batterie
	- Moteur essence 4 temps SUZUKY
	-la consommation de carburant en régime normal
	est de : 6 L/h
Doc C : Coût énergétique unitaire pour	Données
chaque mode d'alimentation possible	- Hauteur moyenne du jet : 100 mètres
Eneo: 1kw.h coûte 79Fcfa	- Masse volumique de l'eau : ρ = 1,0 kg/L
Groupe électrogène : 1 L d'essence	- Intensité de la pesanteur :g=10 N.kg ⁻¹
coûte 650 Fcfa	- 1 Wh = 3600 J

En exploitant les informations ci-dessus, aidez le propriétaire à choisir le mode d'alimentation en énergie de la pompe qui permet de faire les économies.