OFFICE DU BACCALAUREAT DU CAMEROUN DIRECTION DIVISION DES EXAMENS

BP: 13904 Yaoundé Tél.: 222 30 55 66 / 222 30 32 80

EXAMEN: BACCALAURÉAT/ESG

MATIERE: PHYSIQUE

SERIE/SPECIALITE: D et TI

REPUBLIQUE DU CAMEROUN Paix-Travail-Patrie

SESSION: 2020
DUREE 3 heures

COEFFICIENT:

NOTE ÉLIMINATOIRE

REFERENCES ET SOLUTIONS	BAREME	COMMENTAIRES
Exercice 1 : Mouvements dans les champs de forces / 7 points		
Partie 1. Mouvement d'un projectile / 3 points		
1. Équations horaires du mouvement		
Dans le référentiel terrestre supposé galiléen, une bille est soumise uniquement à son poids \vec{P} ;		
TCI: $\sum \vec{F}_{ext} = m\vec{a}$, soit $\vec{a} = \vec{g}$	0,25 pt x 2	
Par intégrations successives, on obtient $\vec{v} \begin{vmatrix} \dot{x} = v_0 cos \alpha \\ \dot{y} = -gt + v_0 sin \alpha \end{vmatrix}$ et		
les équations horaires \overrightarrow{OG} $\begin{vmatrix} x = v_0 t \cos \alpha \\ y = -\frac{1}{2} g t^2 + v_0 t \sin \alpha \end{vmatrix}$	0,25 pt x 2	
2. Équation de la trajectoire		
Comme $t = \frac{x}{v_0 cos \alpha}$, on obtient $y(x) = -\frac{1}{2}g \frac{x^2}{v_0^2 (\cos \alpha)^2} + x \tan \alpha$	0,5 pt x 2	
3. Valeur de la vitesse initiale		
Comme la vitesse initiale est horizontale ($\alpha=0$), l'équation de la trajectoire s'écrit : $y(x)=-\frac{1}{2}g\frac{x^2}{v_0^2}$;	0,25 pt	Apprécier la démarche avec les applications numériques .
le point $A(D; -R)$ appartient à la trajectoire, donc $-R = -\frac{1}{2}g\frac{D^2}{v_0^2}$, soit $v_0 = D\sqrt{\frac{g}{2R}}$;	0,25 pt x 2	
A.N. : $v_0 = 6,26 \text{ m.s}^{-1}$.	0,25 pt	
Partie 2 : La sonde Pionerr 11 au voisinage de Jupiter / 2,5 points		

OBC – Baccalauréat ESG, Série D et TI - PHYSIQUE – CORRIGE NATIONAL HARMONISE

SESSION 2020 page 1/5

REFERENCES ET SOLUTIONS	BAREME	COMMENTAIRES
1. Expression de l'intensité du champ de gravitation au point N		
Soit K la constante de gravitation universelle ; $G(N) = \frac{KM_I}{r^2}$	0,5 pt	
2. Valeur du champ de gravitation au point N		
Comme $r = R_J + z$, on a: $G(N) = \frac{KM_J}{(R_J + z)^2}$ (1); par ailleurs, à la surface de Jupiter, $G_0 = \frac{KM_J}{(R_J)^2}$ (2)	0,25 pt x 2	
En combinant les relations (1) et (2), on obtient : $G(N) = \left(\frac{R_J}{R_J + z}\right)^2$. G_0	0,5 pt	
3. Intensité de la force de gravitation		
$F=mG(N)$; comme $G(N)=\left(\frac{R_J}{R_J+z}\right)^2$. G_0 , on obtient $F=\left(\frac{R_J}{R_J+z}\right)^2$. m G_0 ; A.N.: F = 2,91. 10 3 N	0,5 pt x 2	
Partie 3 : Les lois de Newton sur le mouvement / 1,5 point		
Enoncés de deux lois de Newton sur le mouvement		
 Première loi de Newton ou principe d'inertie: Dans un référentiel galiléen, lorsqu'un solide est isolé ou pseudoisolé, son centre d'inertie G est: Soit au repos, si G est initialement au repos; Soit animé d'un mouvement rectiligne uniforme, si G est initialement en mouvement. 	0,75 pt 2	Deux lois seulement sont exigées ; 0,75 pt pour chacune Accepter toute autre formulation correcte.
 Deuxième loi de Newton ou théorème du centre d'inertie: Dans un référentiel galiléen, la somme vectorielle des forces appliquées à un système est égale au produit de sa masse par le vecteur accélération de son centre d'inertie. 		
• Troisième loi de Newton ou principe d'interaction : Lorsqu'un corps (C) exerce sur un corps (C')		
une force $\vec{F}_{C/C'}$, le corps C' réagit et exerce simultanément sur le corps (C) une force $\vec{F}_{C'/C}$, de		
même direction, de même intensité et de sens contraire.		
Exercice 2 : Systèmes oscillants / 4 points		
1. Bilan des forces :		
Système : le solide ponctuel, dans le référentiel terrestre.	0,25 pt x 2	
Forces appliquées :		
- le poids \overrightarrow{P} du solide ;		
- la tension $\overrightarrow{m{T}}$ du fil		

REFERENCES ET SOLUTIONS	BAREME	COMMENTAIRES
2. Équation différentielle		
2º loi de Newton : $\sum \overrightarrow{F_{ext}} = m \vec{a}$; $soit \ \vec{P} + \vec{T} = m \vec{a}$	0,25 pt	Apprécier d'autres démarches
Par projection suivant l'axe tangentiel (G ; \vec{t}) du repère de Frenet, on a , $-gsin\theta=rac{dv}{dt}$		
avec, $v=L\dot{ heta}$; d'où $\ddot{ heta}+rac{g}{L}sin heta=0$	0,5 pt	
Pour les faibles amplitudes, on a : $sin\theta \approx \theta$ et finalement $\ddot{\theta} + \frac{g}{L}\theta = 0$	0,25 pt	
3. Période : T ₀ = 2,56 s ; amplitude : $\theta_m = 10^\circ$ ou $\theta_m = \frac{\pi}{18}$ rad	0,75 pt+ 0,5 pt	$2,44 \le T_0 \le 2,60 \ (en \ s)$
4. longueur du fil ; partant de $T_0=2\pi\sqrt{\frac{L}{g}}$, on obtient $L=\frac{gT_0^2}{4\pi^2}$; L = 1,66 m	0,25 pt x 2	$1,51 \le L \le 1,71 \ (en \ m)$
5. Équation horaire		
$\theta(t) = \theta_m \cos(\omega_0 t + \varphi)$	0,25 pt	$\theta(t) = \theta_m \sin(\omega_0 t + \varphi)$
conditions initiales : à t = 0 ; $\theta_0 = -8^\circ$ et $\dot{\theta} < 0$		
Comme $\dot{\theta}(t)=-\omega\theta_m\sin(\omega_0t+\varphi)$, on a $cos\varphi=\frac{-4}{5}$ et $sin\varphi>0$, d'où $\varphi=2$, 5 rad	0,25 pt	$\varphi=2,2\ rad$
La pulsation est $\omega = \frac{2\pi}{r} = 2,45 \ rad. \ s^{-1}$		
Finalement $\theta(t) = \frac{\pi}{18} \cos s(2, 45 t + 2, 5)$ (en rad) ou $\theta(t) = 10 \cos(2, 45 t + 2, 5)$ (en °)	0,25 pt	$\theta(t) = \frac{\pi}{18} \sin(2,45 t + 4,1) \text{ (en rad)}$ $ou \ \theta(t) = 10 \sin(2,45 t + 4,1) \text{ (en °)}$
Exercice 3 : Les phénomènes ondulatoires et corpusculaires / 5 points		
A- Phénomènes ondulatoires / 2,5 points		
1. Sens des expressions		
Lumière monochromatique : lumière constituée d'une seule couleur.	0,25 pt	Accepter toute autre formulation correcte
Sources cohérentes : sources conservant entre elles un déphasage constant.	0,5 pt	Accepter toute autre formulation correcte
2. L'interfrange est la distance séparant les milieux de deux franges consécutives de même nature.	0,5 pt	Accepter toute autre formulation correcte
3. Expression de l'interfrange : $i = \frac{\lambda D}{a}$	0,50 pt	
Calcul de la longueur d'onde : $i = \frac{d}{9}$ et $i = \frac{\lambda D}{a}$, d'où $\lambda = \frac{ad}{9D}$; A.N. : $\lambda = 6, 25. 10^{-7} m$	0,25 pt x 3	

	B- Phénomènes corpusculaires / 2,5 points		
1.	Effet photoélectrique : émission d'électrons par un métal éclairé par un rayonnement	0,5 pt	Accepter toute autre formulation correcte
	électromagnétique convenable.		
2.	Relations		
$\boldsymbol{E}_{\boldsymbol{C}}$	$E_{\lambda} = eU_0$ et $E_{\lambda} = E_C + W_S$	0,5 pt x 2	
3.	Détermination de W_S		
	$W_S = E_{\lambda} - E_C$ avec $E_{\lambda} = \frac{hc}{\lambda_1}$ et $E_C = eU_1$, d'où $W_S = \frac{hc}{\lambda_1} - eU_1$; A.N. : $W_S = 2$, 34. $10^{-19} J$	0,25 pt x 2	
	Calcul de λ_S : $\lambda_S = \frac{hc}{w_S}$; $\lambda_S = 8, 5. 10^{-7} m$	0,25 pt x 2	
	Exercice 4 : Exploitation des résultats d'une expérience / 4 points		
1.	Équation de la désintégration : $^{210}_{84}Pu \rightarrow ^{2}_{2}He + ^{206}_{82}Pb$	0,5 pt	
2.			Les nombres a et b sont les valeurs manquantes du tableau ;
	2.1. Calcul de a et b : (0, 60; 1, 00)	0,25 pt x 2	Ne pas tenir compte de l'ordre, pour ceux qui ont traité la question. Pour ceux qui ne l'ont pas traitée, reverser les points de la question à la courbe.
	2.2. Tracé de la courbe des variations de $-ln\left[\frac{N(t)}{N_0}\right]$ en fonction du temps.	1,5 pt	0,25 pt x 2 pour le respect de l'échelle sur chaque axe ; 0,5 pt pour les points bien placés ; 0,5 pt pour la droite moyenne.
3.	D'après la loi de décroissance radioactive, $N(t) = N_0 e^{-\lambda t}$, donc $-\ln\left[\frac{N(t)}{N_0}\right] = \lambda t$, ce qui correspond	0,25 pt	
	à une droite passant par l'origine. Comme la courbe obtenue est une droite passant également par		
	l'origine, on peut dire que la loi de décroissance est en accord avec la représentation graphique réalisée.	0,25 pt	
4.	Pente (a) de la courbe : $a = \frac{\Delta \left(-ln\left[\frac{N(t)}{N_0}\right]\right)}{\Delta t} = 5.10^{-3} jour^{-1}$;	0,25 pt	
	Constante radioactive $\lambda = a = 5.10^{-3} jour^{-1}$	0,25 pt	
5.	Demi-vie : $t_{1/2}=rac{Log2}{\lambda}$; A.N. : $t_{1/2}=138,6~jours$	0,25 pt x 2	
	Vacundá la 04 ac	2020	•

Yaoundé, le 04 aout 2020 Le Président du Jury d'harmonisation