Ministère des Enseignements Secondaires Délégation Régionale de L'Ouest IRP/Sciences Sous-Section Mathématiques

Examen: Baccalauréat Zéro

Session: 2021

Série : A-ABI

Épreuve : Mathématiques

Durée : 2 heures

Coef : 2

PROPOSITION DU CORRIGE DE L'EPREUVE ZERO

PARTIE A : EVALUATION DES RESSOURCES		
REFERENCES ET SOLUTIONS	BAREME	COMMENTAIRES
EXERCICE 1		
1) Déterminons le triplet de réels $(x; y; z)$ vérifiant : $\begin{cases} x + y = 21 & (1) \\ x + z = 10 & (2) \\ y + z = 19 & (3) \end{cases}$ On a :(1) $\Leftrightarrow x = 21 - y$ et $de(2) \Leftrightarrow z = 10 - x$, ainsi par substitution dans (3) on a	1,5 pt	0,5pt pour chaque valeur juste de x , y et z .Appréciez la méthode.
$21 - x + 10 - x = 19 \Rightarrow x = 6. \text{ Par conséquent } y = 15 \text{ et } z = 4.$ Donc le triplet cherché est : $(x; y; z) = (6; 15; 4)$		
2) Déduisons le triplet $(x; y; z)$ solution de : $\begin{cases} lnx + lny = 21 \\ lnx + lnz = 10 \\ lny + lnz = 19 \end{cases}$ Contraintes : $x > 0$ et $y > 0$. Posons $X = lnx$, $Y = lny$ et $Z = lnz$; On obtient donc le système $\begin{cases} X + Y = 21 \\ X + Z = 10 \text{ ce qui donne d'après la question 1} \end{cases} X = 6, Y = 15 \text{ et } Z = 4.$ Ainsi, $lnx = 6$, $lny = 15$ et $lnz = 4 \Rightarrow x = e^6$, $y = e^{15}$ et $z = e^4$.	1,5 pt	0,25 pour la contrainte 0,5 pour le changement de variable 0,25 pt pour chaque valeur trouvée
Donc le triplet cherché est : $(x; y; z) = (e^6; e^{15}; e^4)$ 3) Déterminons la dépense totale de BOUBA pour l'achat des trois articles. Soit x le prix d'un téléphone, y le prix d'un ordinateur et z le prix d'une paire de chaussures.	2pts	0,25pt pour le choix des inconnues ;

On a : $\begin{cases} x + y = 210\ 000 \\ x + z = 100\ 000 \end{cases} \Rightarrow \begin{cases} \frac{x}{10000} + \frac{y}{10000} = 21 \\ \frac{x}{10000} + \frac{z}{10000} = 10 \Rightarrow \begin{cases} X + Y = 21 \\ X + Z = 10 \text{ avec } X = \frac{x}{10000}, Y = \frac{y}{10000} \text{ et } X = \frac{y}{10000} \end{cases} $ et $Z = \frac{z}{10000}. \text{ D'après la question 1) on a : } X = 6; Y = 15 \text{ et } Z = 4.$ Ainsi $x = 60\ 000; \ y = 150\ 000 \text{ et } z = 40\ 000. \text{Par conséquent le prix d'un téléphone est } 60000fcfa, \text{ celui d'un ordinateur est } 150000fcfa \text{ et celui de la chaussure } 40000fcfa$ $\Rightarrow x + y + z = 60\ 000 + 150\ 000 + 40\ 000 = 250\ 000$ Conclusion: La dépense totale de BOUBA est de 250\ 000FCFA		0,5pt pour le système $\begin{cases} x+y=210000\\ x+z=100000\\ y+z=190000 \end{cases}$ 0,75 pt pour la résolution de ce système 0,5pt pour le résultat de la dépense totale
EXERCICE 2	ı	
FALONNE dispose de 10 pièces de monnaie dans son porte-monnaie : 4 pièces de 25 FCFA et 3 pièces de 50 FCFA et 3 pièces de 100 FCFA	0,5pt	0,25 pt pour la démarche ; 0,25 pt pour le résultat.
 Déterminons le nombre de tirages possibles. Le nombre de tirages possibles est : C₁₀³ = 120 tirages. Déterminons la probabilité de tirer 3 pièces de même valeur. 	1pt	0,5 pt pour la démarche ; 0,5 pt pour le résultat.
$p = \frac{C_4^3 + C_3^3 + C_3^3}{C_{10}^3} = \frac{6}{120} = \frac{1}{20}$ 3) Déterminons la probabilité de tirer 3 pièces de valeurs différentes. $C^1 \times C^1 \times C^1 = 36 = 3$	1pt	0,5 pt pour la démarche ; 0,5 pt pour le résultat.
$p = \frac{C_4^1 \times C_3^1 \times C_3^1}{C_{10}^3} = \frac{36}{120} = \frac{3}{10}$ 4) Déterminons la probabilité de tirer 3 pièces dont la somme est 150FCFA. $p = \frac{C_3^3 + C_4^2 \times C_3^1}{C_{10}^3} = \frac{19}{120}$	1,5pt	1 pt pour la démarche ; 0,5 pt pour le résultat.
-10		
EXERCICE 3 On donne la fonction f définie our \mathbb{D} nor $f(x) = xe^{-x}$	<u> </u>	
On donne la fonction f définie sur \mathbb{R} par $f(x) = xe^{-x}$. 1) Calculons les limites de f en $-\infty$ et en $+\infty$.		
$\lim_{\substack{x \to -\infty \\ \lim_{x \to +\infty}}} f(x) = \lim_{\substack{x \to -\infty \\ \lim_{x \to +\infty}}} xe^{-x} = -\infty$	1pt	0,5 pt pour la limite juste.
Déduisons une équation de l'asymptote horizontale de (C_f) .		
Comme $\lim_{x\to +\infty} f(x)=0$ alors la droite d'équation $y=0$ est asymptote horizontale à (C_f) au voisinage de $+\infty$.	0,5pt	Aucune justification n'est exigée.
2) Montrons que $\forall x \in \mathbb{R}, f'(x) = (1-x)e^{-x}$.		

Pour tout réel x , $f(x) = xe^{-x}$ alors, $f'(x) = x'e^{-x} + x(e^{-x})'$	1pt	0,5 pt pour la démarche ;
$f'(x) = e^{-x} - xe^{-x} = (1 - x)e^{-x}.$	-	0,5 pt pour le résultat.
3) Dressons le tableau des variations de f .		
$f'(x)$ et $1-x$ ont le même signe sur \mathbb{R} , car $e^{-x}>0$.		
Posons $f'(x) = 0 \Rightarrow (1 - x)e^{-x} = 0 \Rightarrow 1 - x = 0 \Rightarrow x = 1$, car $e^{-x} \neq 0$.		
		0,5 pt par ligne du tableau de variation de
$x \mid -\infty 1 +\infty$	1,5pt	f;
f'(x) + 0 -		
7 (0)		
f(x)		
$-\infty$		
4) Traçons (C_f) .		
$y\uparrow$		
3+		
2-		
		0,25 pt pour un bon repère ;
1-		0,25 pt pour l'asymptote horizontale ;
	1pt	0,5 pt pour l'allure de la courbe.
1/e		
-4 -3 -2 -1 0 1 2 3 4 x		
/ -1		
-2-		
-3-		
5) Montrons que $F(x)=(-x-1)e^{-x}$ est la primitive de f sur $\mathbb R$ qui prend la valeur -1 en 0		
On a $\forall x \in \mathbb{R}$, $F'(x) = (-x-1)'e^{-x} + (-x-1)(e^{-x})'$		
$= -e^{-x} - (-x - 1)e^{-x}$		
$= -e^{-x} + xe^{-x} + e^{-x}$		
$=xe^{-x}$		
Alors, $F'(x) = f(x)$. De plus, $F(0) = (0-1)e^0$	1pt	0,75 pt pour le calcul de la dérivée ;
= -1	-	0,25 pt pour le calcul de $F(0)$.
Donc F est la primitive de f qui prend la valeur -1 en 0.		o,25 pt pour le cuitai de 1 (0).

<u>Conclusion</u> : F est la primitive de f qui prend la valeur -1 en 0 .				
PARTIE B : EVALUATION DES COMPETENCES				
REFERENCES ET SOLUTIONS	CRITERES	INDICATEURS ET BAREMES		
Tâche 1 : Déterminons l'aire maximale du nouveau champ $FCGH$ de NYANGONO - Déterminons l'expression de l'aire $A(x)$ en fonction de x . BC=50m et BG=x donc FH=50+x DC=200m et DF=x donc FC=200-x Le champ ayant la forme rectangulaire, l'aire est $A(x) = FC \times FH$ $= (50 + x)(200 - x)$ $= -x^2 + 150x + 10000$ $A(x) = -x^2 + 150x + 10000$	C ₁ : Interprétation correcte de la situation C ₂ : Utilisation correcte des outils	0,25 pt pour l'expression de l'aire $A(x)$; 0,25 pt pour le calcul de la dérivée $A'(x)$ 0,25 pt pour le calcul de l'abscisse du point en qui la dérivée s'annule; 0,25 pt pour le résultat 15 625.		
 Déterminons l'abscisse du point en qui A(x) atteint son maximum. A'(x) = -2x + 150. Ainsi A'(x) = 0 ⇒ -2x + 150 = 0 ⇒ x = 75 A(x) est donc maximale pour x = 75. Déterminons la valeur maximale de l'aire. On a : A(75) = (200 - 75)(50 + 75) = 15 625 Conclusion : L'aire maximale du nouveau champ de NYANGON est de 15 625 m². 	C₃: Cohérence	0,5 pt pour le bon enchainement (démarche et unité).		
Tâche 2 : Déterminons le prix de vente maximal du sac de macabos après les fêtes.Posons P_0 le prix initial du sac de macabos, P_1 le prix du sac de macabos avant les fêtes et P_2 le prix du sac de macabos après les fêtes.Exprimons le prix P_1 du sac de macabos avant les fêtesOn a P_1 = P_2 P_2 P_3 P_4 P_4	C ₁ : Interprétation correcte de la situation	0,25 pt pour l'expression du prix P_2 après les fêtes ; 0,25pt pour le calcul de la dérivée ${P'}_2(x)$		
On a $P_1 = P_0 + \frac{P_0}{100}x = 80\ 000 + \frac{80\ 000}{100}x = 800x + 80\ 000$ Exprimons le prix P_2 du sac de macabos après les fêtes On a $P_2 = P_1 - \frac{P_1}{100} \left(\frac{x}{2}\right) = 800x + 80\ 000 - \frac{800x + 80\ 000}{100} \times \frac{x}{2} = -4x^2 + 400x + 80\ 000$ Déterminons l'abscisse du point où $P_2(x)$ soit maximal	C ₂ : Utilisation correcte des outils	0,25 pt pour le calcul de l'abscisse du point en qui la dérivée s'annule ; 0,25 pt pour le résultat 90 000.		
On a $P'_2(x) = -8x + 400$. Ainsi $P'_2(x) = 0 \Rightarrow -8x + 400 = 0 \Rightarrow x = 50$. Donc le prix est maximal pour $x = 50$. - <u>Déterminons le prix maximal.</u> On a $P_2(50) = -4 \times 50^2 + 400 \times 50 + 80\ 000 = 90\ 000$ <u>Conclusion</u> : Le prix maximal du sac de macabos après les fêtes est de $90\ 000\ FCFA$	C₃: Cohérence	0,5 pt pour le bon enchainement (démarche et unité). NB : Accepter la méthode permettant de déterminer les coordonnées du sommet de la parabole $P_2(x)$.		

Tâche 3 : Déterminons le taux de réduction du prix d'un sac de patates douces.	C ₁ :	0,25 pt pour l'expression du prix Q_1 d'un
Posons Q_0 le prix initial du sac de patates, Q_1 le prix du sac de patates avant les fêtes et Q_2 le	Interprétation	sac de patates douces avant les fêtes ;
prix du sac de patates après les fêtes.	correcte de la	0,25pt pour l'expression du prix Q_2 d'un
- Exprimons le prix Q_1 du sac de patates avant les fêtes	situation	sac de patates douces après les fêtes.
On a $Q_1(t) = Q_0 - \frac{Q_0}{100}t = 50\ 000 - \frac{50\ 000}{100}t = 50\ 000 - 500t$		
- Exprimons le prix Q_2 du sac de patates douces après les fêtes	C ₂ :	0.25 mt many change valour 46 at 4
$Q_2(t) = Q_1 + \frac{Q_1}{100} \times 2t = 50\ 000 - 500t + \frac{50\ 000 - 500t}{100} \times 2t = -10t^2 + 500t + 50\ 000$	Utilisation correcte des	0,25 pt pour chaque valeur 46 et 4, solution de l'équation $Q_2(x) = 51 840$
- Déterminons t pour que $Q_2(t) = 51840$.	outils	
On a $-10t^2 + 500t + 50000 = 51840 \Rightarrow -10t^2 + 500t - 1840 = 0$		
$\Delta = b^2 - 4ac = 500^2 - 4(-10)(-1840) = 176400 = (420)^2$ Ainsi $t_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-500 - 420}{-20} = \frac{-920}{-20} = 46$ et $t_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-500 + 420}{-20} = 4$	C₃: Cohérence	0,5 pt pour le bon enchainement du raisonnement (démarche et unité du taux en pourcentage). NB : l'une des
<u>Conclusion</u> : Le taux de réduction du prix d'un sac de patates douces est 46% ou 4%.		deux valeurs 46% et 4% sera acceptée.
NB : Le point réservé à la présentation porte sur l'ensemble de toute la copie du candidat.	Présentation	0,25 pt pour la lisibilité
		0,25pt pour l'orthographe et la grammaire