Program

AIMS TEACHER TRAINING PROGRAM (TTP) IN PARTNERSHIP WITH MASTERCARD FOUNDATION AND THE GOVERNMENT OF CAMEROON

 MATHEMATICS OLYMPIAD

 MATHEMATICS OLYMPIAD}

LEVEL: NATIONAL

DATE:

DURATION OF PAPER: 2 hours
CANDIDATES: Form 5 students

PART B

INSTRUCTIONS TO CANDIDATES:

- Mobile phones are NOT ALLOWED in the examination room
- You should attempt to answer all questions.
- You are reminded of the necessity for orderly presentation and good English in your work.
- In calculations, you are advised to show all steps in your work, and show answers at each stage.
- Each question is 15 marks.
- Non-programmable electronic calculators are allowed
- Graph paper will be provided.

1. Three matrices \mathbf{M}, \mathbf{N} and \mathbf{T} are given by:

$$
\mathbf{M}=\left(\begin{array}{ll}
a & 1 \\
1 & a
\end{array}\right), \quad \mathbf{N}=\left(\begin{array}{ll}
b & 1 \\
1 & b
\end{array}\right) \quad \text { and } \quad \mathbf{T}=\left(\begin{array}{ll}
x & y \\
y & x
\end{array}\right)
$$

Given that $\mathbf{M N}=\mathbf{T}$,
a) verify that $(a+1)(b+1)=x+y$, and express $(a-1)(b-1)$ in terms of x and y.
b) express $\left(a^{2}-1\right)\left(b^{2}-1\right)$ in terms of x and y, and hence, express $\left(17^{2}-1\right)\left(21^{2}-1\right)$ as the difference of the squares of two integers.
2. (i) In a Mini Agro Pastoral show in one Region in Cameroon, farmers can exhibit any or all of the food crops: Cassava(C), Plantains(P) and/or Yams(Y). The Venn diagram in figure 1 shows the number of farmers and the crop type on exhibition.

Given that $n(Y)=27,8$ farmers exhibit plantains only and that 5 farmers exhibit cassava only, determine:
a) The value of x
b) How many farmers exhibit only cassava and plantains?
c) Find the number of farmers who exhibit cassava.

Fig: 1
d) How many farmers were present?
e) In ordinary English, describe the set $\mathrm{P}^{\prime} \cap \mathrm{C} \cap \mathrm{Y}$
(ii) A square of side 16 cm is drawn. Another square is drawn inside by joining the midpoints of the sides of the first square, a third square is drawn by joining the midpoints of the sides of the second square and a forth square is drawn by joining midpoints of the sides of the third square and this process continues indefinitely. Find the sum of the areas of all the squares

3 A line L passes through points $(-2,3)$ and $(-1,6)$ and is perpendicular to a line P at $(-1,6)$.
a) Find the equation of L.
b) Find the equation of P in the form $a x+b y=c$, where a, b and c are constant.
c) Given that another line Q is parallel to L and passes through point $(1,2)$ find the x and y intercepts of Q .
Find the point of intersection of lines P and Q.

Figure 4 shows two lines l_{1} and l_{2} in the Cartesian plane where the unit of length is the cm .

The equations of l_{1} and l_{2} are $7 x-6 y-9=0$ and $x+2 y-8=0$ respectively. The point \mathbf{A} is on the x-axis and the line segment, $[\mathbf{A C}]$ is parallel to the y-axis.

Find the area of triangle $\mathbf{A B C}$.
ii) In the given figure below, $A B \| D E$ and the area of the parallelogram $A B F D$ is $24 \mathrm{~cm}^{2}$. Find the areas of triangles AFB, AGB, and AEB:

