Program

AIMS TEACHER TRAINING PROGRAM (TTP) IN PARTNERSHIP WITH MASTERCARD FOUNDATION AND THE GOVERNMENT OF CAMEROON

 MATHEMATICS OLYMPIAD

 MATHEMATICS OLYMPIAD}

LEVEL: NATIONAL

DATE: $15^{\text {TH }}$ MAY 2021
DURATION OF PAPER: 2 hours
CANDIDATES: UPPER SIXTH

PART B

INSTRUCTIONS TO CANDIDATES:

- Mobile phones are NOT ALLOWED in the examination room
- You should attempt to answer all questions.
- You are reminded of the necessity for orderly presentation and good English in your work.
- In calculations, you are advised to show all steps in your work, and show answers at each stage
- Non-programmable electronic calculators are allowed
- Graph paper will be provided

AIMS
African Institute for

INSTRUCTIONS: ANSWER ALL FOUR QUESTIONS IN THIS SECTION. EACH QUESTION CARRIES 15 MARKS

(i) Find the number of solutions in the set of positive integers of the following equations:
a) $x+y=14$
b) $x+y+z=5$
(ii) Solve simultaneously, the linear congruences:

$$
\left\{\begin{array}{c}
x \equiv 1(\bmod 3) \\
x=5(\bmod 8) \\
x=11(\bmod 17)
\end{array}\right.
$$

(iii) Show that the equation $x^{2}-y^{2}=74$ has no integer solution

2 Two circles are internally tangent. A line passing through the center $\left(O_{1}\right)$ of the larger circle intersects it at the points A and D.The same line intersects the smaller circle with center $\left(O_{2}\right)$ at the points B and C as shown below. Given that $|A B|:|B C|:|C D|=3: 7: 2$, find the ratio of the radii of the circles.

3
The Figure beside shows the curve of $y=2 x-x \ln x$, where $x>0$

The curve crosses the x-axis at A, and has a turning point at B . The point C on the curve has x-coordinate 1. Lines $C D$ and $B E$ are parallel to the y-axis.
i) Find the x-coordinate of A, giving your answer in terms of e.
ii) Find the exact coordinates of B.
iii) Show that the tangents at A and C are
 perpendicular to each other.
iv) Using integration by parts, show that

$$
\int x \ln x d x=\frac{1}{2} x^{2} \ln x-\frac{1}{4} x^{2}+C
$$

Hence find the exact area of the region enclosed by the curve, the x-axis and the lines $C D$ and $B E$

4 i)Given that $I_{n}=\int_{0}^{\frac{\pi}{2}} e^{-x} \cos ^{n} x d x$, where $n \geq 2$, prove that:
a) $I_{n}=1-n \int_{0}^{\frac{\pi}{2}} e^{-x} \sin x \cos ^{n-1} x d x$
b) $\left(n^{2}+1\right) I_{n}=1+n(n-1) I_{n-2}$
c) $I_{6}=\frac{263-144 e^{-\frac{\pi}{2}}}{629}$
ii) Test whether the series $\sum_{n=0}^{\infty}\left(\frac{2^{n-1}}{4+n}\right)$ converges or not.

